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By d. LYELL SANDER_, ,Jr.

SUMMARY

.1 o,eflicient i._ .btained f,,r determining the e,ffect
.f o rei'nforeing strin.oer on the ,_tress concentration

factor at the tip ..{ a crack in a thin ,qheet. The'

results are .oicen .for the case in which the <s'tringer i,_

intact and for the ease in wh ich the sO'in.c er is breken.

I_ the fir,_'t ease the ._'tress concentration .facto+" for
the stringer i._ al,_'o 9izen.

INTRODUCTION

Some damage to aircraft structures due to

fatigue or accident is statistically inevitable; thus,

the fail-safe concept has entered into design con-

siderations. One of the problems associa, ted with
this concept is the determination of the static

strength of cracked parts, The mechanism of

static failure of a structure weakened by the pres-
ence of a crack is by no means completely under-

stood at the present lime. IIowever, an engineer-

ing theory which seems to hold some promise has

recently become available (ref. 1). In this theory

the significant quantity determining the strength
of the cracked structure is the stress concentration

f'lclor at the end of tim crack (corrected for plas-

ticity and the so-called size effect). The funda-

mental info,':mation needed to apply the method
is the stress concentration factor obtained from

elasticity theory.

For many configurations an exact, solution for

the stress distribution from the theory of elastic-

ity is very diflqcuh to obtain. However, a con-
siderabh, amount of information that is useful and

a(lequate for practical applications has been ob-

taine<l by making v'ariou_ idealizations and simpli-

fications of the problems. As a further contril)u-

tion, the results contained in Ihe present paper
were obtained.

The prot>lem considered in the present l)al)er is
the <h'termination of the relieving effect of a re-

inforcing slringer on the stress concentration at

the tip of a crack in a thin sheet. The crack runs

peroendicular to the stringer and extends a.n equal
distance on either side of it. The state of stress

in the sheet fat" away from the crack is a tens|h,

stress parallel to the stringer. The stress con-

centration factor for a erack in a thin sheet may
be determined from a known formula. (See ref.

1.) The factor l>y wlfich this known result can

be multiplied in order to correct for the presence

of the reinforcing stringer is determined in (he
present paper. The stress concentration factor

in the stringe," due to the crack and the correc-
tion factor for the crack in the, case in which the

stringer is broken arc also found in the analysis.

Thc results are presented graphicMly and in tabu-
lar form.

SYMBOLS

A cross-sectional area of stringer

B function defined in equation (30)

b length of crack on one side of

stringer
C ratio t)etween stress concentration

factors for a cracked sheet with
and without a stringer

1 ,quper_des NACA Technical N'o|e t-_7 by 1. Ly,,ll _ander-_, Jl',, |,1,]5_.
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corresponds to (-_' in ease where

stringer is broken

Young's modulus for sheet ma-
terial

Young's modulus for stringer ma-
terial

analytic function defined in equa-

tion (11)
shear mo(hdus for sheet material

stress function (see eqs. (2))
modified Bcssel fimctions of firs!

kind

modified Bessel functions of second

ldnd

Struve functions of ima_nary

argument

load in siringer at its intersection
with crack

load concentration factor for

stringer, PE/zAE,,

) real part of and imaginary part of

dummy variabh, of integration
sheet thickness

displacement in x_-(lirection
dimensionless eoor<linates (see eqs.

(4))
physical coord iJm t es

eOml)lex variable, .r+iy

Euler's constant, 0.57722

complex variables

dummy variable

similarity parameter, 2btE/AE_,
direct stress in sheet at infinity
direct and shear stresses in sheet

direct stress in sheet with a crack

1)ut without a stringer

analytic function, _+i¢+

corresponds to 'P for a sheet with-

out a stringer

4, dimensionless stress function (see

eqs. (4))

g, dimensionless disl)lacement (see

eqs. (4))
Primes indicate differentiation and the nota-

lion-indicates an asymptotic relationship.

ANALYSIS

Two simplifications of the problem are made in

the present: analysis. One simplification is that

tile sheet is assumed inextensional in the direction

paralM to the crack. This oi:iliotropic sheet was

introduced by Itihlebrand (ref. 2) aml greatly

siinplifies the equations oYplahe stress. The

other simplification is to tlr6at the crack as a

straight-line segment and assume that the strength

of the stress singularity at the end of the idealized
crack is a measure of the stress concentration due to

a thin crack with a small, but nonzero, radius of
curvature at its end. The effect of tilt' stringer

on the strength of the stresss[ngularity is found

by solvi.qg the two similar problems Of the cracked
sheet with and without the stringer. The desired

correction factor previously defined is t,al<en to be

the ratio of the two strengths thus fom_d.

FORMVLATm:_ or BOUNDAnY-WLVEPROnLEM

The thin sheet with a crack and attaehe(I

stringer is represented in figure 1. According to

the ort hotropie plane-stress theory of reference 2,

the stress-displacement relations are

o-_=E _ (1)

DU,Jv---G_ h

xvll(q'e 0"x alld 7- arc the direct and shear stresses,

respectively, E is Young's modulus, G is the shear

modulus, and u is the (lisl)lacement in the x_-direc-

tion. The displacement in the y_-direction is zero

from symmetry. Equilib_ [s Satisfied if the

y,

(o, b)

....Crack

(o,-b)

• X i

"-Stringer

FIGURE 1. Cracked sheet witTT(-reinforcing stringer.



EFFECT OF A STRINGER ON THE STRESS CONCENTRATION DUE TO A CRACK IN A THIN SHEET 3

stresses are given in terms of a stress function II
a,s follows:

bH 1

'_= N)_j_ _ (2)

blI]
--aT, j

An eqnation of equilibriunl for the stringer may

be obtained by considering the portion of the

stringer from the origin to xl as a free body. (See

fig. 2.) The displacements in the stringer must
be the same as those in the sheet along the zt-axis;

hence, fi'om equation (1) the stress in the stringer

Es t

nmst be ¢r_-E ' where E,t is Young's modulus for

the stringer mAt.erial. The required equilibrium

equation is thus

E "Jo

where ,r is/he direct stress in the sheet at infinity.

The following equatimm may now be obtained

by eliminating _: and r from equations (1) and (2):

which are the Cauehy-Riemann eqmlfions. I1
follows that

¢+ i¢- q_(z+ iv) =,_ (z) (6)

where • is an analytic function of the complex
variable z.

Because of symmetry, a. boundary-vahw prob-

lem may be formulated for the upper half-plane

only. From equation (3)

_¢ X_= P (y= O) (7)
0?l

Siuee cry= 0 on the crack

,_=0 (_=0, 0_<y=<1) (8)

j"q OH ,
E,t bH 2t --

--A E 5yl o O'fl all

Es_ OH 2tH
--,-1 E 5yl

(3)

where P is the lo_ul in the stringer at x_ =0, A is the

cross-sectional area of the stringer, t is the thick-

ness of the sheet, and H(0,0) has arbitrarily been
chosen as zero.

]nt.roduce dimensionless variables and param-
eters as follows:

/ E 5¢

yl=by r= --a _,l _ -:--
_" r_ O.r

75 PE

orb . 2btE

_ =--_7E-77/¢ A=AE.,

(4)

P %_ E,--2

Fmum,: 2.--Free-body diagram of a segmenl of thc Mringer.

From symmetry, u=0 on the line (a¢- O, y> 1) aud
at t.he point (x=0, y=0); therefore,

(x=0, y> 1);
¢, o (x=0, ,,/= o) (9)

Since a_--+_ and r->0 at infinity,

_ -iz (z -_ _ ) 0 O)

SOLUT|ON OF BOUNDARY-VALUE PROBLEM

The boundary-value problem just formulated

for q, is of the mixed type. tIowever, the problem

may be reduced to the more familiar DMehlet

type by introducing a new unknown function F
defined as follows: ......

F(z) = _,' + ixq, + i-]"

(_¢-x¢, -; (_* x4,-F

The boundary-value problem for Y is as follows:

1l (F) = 0 (_,= 0, y> 1) (] 2)

I(F)=0 (y=0) _ (13)
I(F)=F (;r=0, y<l) ,,

F_ Xz (z_ co) (14)

500397 59 -2
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The solution fi)r F is found to be the crack,

C
F=2_r log v(z-7_ l --lz t"X(z_ 1-b_!_Si, (153

where the arbitrary constan! C is real and the

radi(.al is posiiive on the positive real axis. From

equation (11), it follows thai

¢' + iXq, = F-- il' (16)

Solving for q5 with the use of the relationship

"----i_ at infinity gives

,I,=--_--i,,,'z2 + l +e -ix_ log _.

+ i_" kC'_ e_×td_. (17)
(.C_+I/

Interpretation of C.--The stress concentralion
factor P for ltw stringer and the coefficient C are

as y(q unknown. Before proceeding to deternfinc
them as functions of X, it is convenient to show
t.lillt C itself is the ratio bctweetl the stress con-

eentration fuclors for a craeked sheet with and

without a stringer.

The sohltion to the I)roblem of determining

the complex stress fimetion for tit(, cracked sheet

without a stringer may be obtained from equations

(15) and (16) by letting X--> _o, which is equivalent
2bin

to letting E_,'I--)O since X------- The result is
E..A

'_o=--iv'z2+ l (18)

The stress field is determined from the derivative

of the stress function, which in the neight)orhood

of z----[ (the tip of the crack) 1)ehaves as follows:

I
_b,' _.. (z---->i) (19)

'2 i (z -- i)

There is evidently a singularity at. z----i. For the

cracked sheet with a stringer,

C

¢'~r_) (z_i) (20)

as is evident from equation (16) since q,(i)=0

fi'om equations (8) and (9). On the line (x_-0,

y_>l), r=O and ar=ia'I". Thus, at the tip of

Crz q_ t

a,., ¢0' C (21)

and C is evidently the required ratio.

Determination of C and P. -The two conditions

availabh, for det.ermining the two unknowns P
and C as functions of X arc

(I,(0) =0} (22)4)(i) =0

which follow fi'om equations (8) and (9). When

applied to equation (17), these conditions yMd

P., ¢o/2p, _.'_-_+1-1
q'(O] ..... _- i i-- log

" x J,_k _- _"

i_+('\

+_) <."xidr=O (23)

7;. _¢<12T, (-'c_+1-1

if+ C'_

By use of equation (24), equation (23) becomes

• p f0--_+X- (e-X--l)+ l°g _/f2+l-- 1

• (-f .

_._f2+ 1] e'xr df=O (25)

When the log term is integrated by parts, equa-
tions (25) and (24) become, respectively,

• 27; ('Ol_e;X_- d/'+ / ,.'--['°Jr4-Ce'x_ rig'=0 (26)

 +2T ¢,= . . c,oi +c

Next make the substitution f=in to obtain

2P ['_ 1--e -x. , ['i C--n
-- /--_.. =-=(_-- / .... _e -x"dv 1 (28)
vX J0 r/_, 1--_/z do_, I--V
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Tile definite integrals occurring in equations (28)

and (29) are expressible in terms of known func-
tions as follows:

_ l--e-X' = _Ko(,_) ¢l._",7(U--_ d,

e-x,7

.(_2_ 1

where /t/0 and K_ are modified Bessel functions
of the second kind. Let

('_ 1 e -x"

B(X)=/ _ dr/
do _(l--_7

(30)

Tile function B(X) and its first two derivatives

are expressible in terms of the Struve functions

of imaginary argument L0 and L_ and modified
Bcssel functions of the first kind [0 and I_ as

follows (see rcf. 3):

B(x) =_ [L,(,_)- L,,(.,.)]d.,.

I_' (x) = f[ (1--_e-_'--"" --_-2lie(x) -- Lo (x)] }-

I _-Xn t 71" JB"(×)=-- ,_ _ (.1=--1+ 2 [L(x)-L,(x)]
_, l _-V _

(31)

The first integrals of the modified Bessel funclions can be expressed as follows:

f[ xIo(x)+ x )
(3[ = +A', (x)L0(x)]

Equations (28) and (29) may now be written

w

--'2t-B-- B' C= 1+ B" (33)
r),

1_ I(o(,_')ds + I(oC= K, (34)
rx dx

where, in equation (34), use has been made of the

formula 7r Equations (33) and (:34)
j,,

may be solved for C and _ to give the folh)wing
results

aa
BK -- (_ + B") Ko(,,')d,;

C= (35)

 rCo+Z' f[

(32)

T=TrX B'K,+(I+ B")I_o

2 BKo+B' [(_(._')ds (36)

Solution for broken stringer.--For the case in

w]fieh the stringer is broken at x:0, the factor C

must be replaced by C* obtained from the solution

to the boundary-value prot)lem appropriate for

the broken stringer. The solution to this problem

is easily obtained from the one already given. It

is only necessary to set P= 0 and drop the require-

ment _(0) 0. The requirement 4)(i):0 is re-
tained and ]cads to equation (34) as before, except

T=O. Thu%

c*= t;' (37)
h'o

Computation of results.--Tables of the modi-
fied Bessel functions are readily available. Values
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of the Slruve functions L0 and L, may be obtained

from tables given in reference 4 for the range

0=<X=_<410 at intervals of 0.l. No tames seemed

2'to be availabh, for Lo(s)ds; therefo,'e, vah,es of

Otis function for values of X<2 were computed

from a power series. For values of X belween 2
and 6, it was more convenient to eonlpule the

function /] by numerical integral|on from the
formula

f0 x/2

B(x)= (l_e_x_,.o) dO
sin 0 (38)

which was obtained from equation (30) by an

obvious substitution. For values of k>6, the

function B was comt)uted from the asymptotic

series

B(X) .._'/+log 2X_2 ._-_ .; [-(2n--1) !-]2 1 (39)
, ,,k (n-U!._l (2x)_"

which also was obtained fi'om equation (30) by

well-known methods (-/=0.57722 is Euler's con-

stant). For the same values of X, the functions B'
and B" were computed from the derivatives of

equation (39).
Results of the computations re," C, P, and _*

for X< 100 are given in table I within slide-rule
accuracy. The results are also plotted in figures
3 to 5. For values of X>100, the following

m

asymptotic fornmlas give C, P, and ('* within

slide-rule accuracy:

1lC---1 _'41og 2X

77.._ x+0.875

2 -/+log 2X [

J1

C*_ l+_x

('4O)

NUMERICAL EXAMPLE

Consi(ler a sheet 0.1 inch thick reinforced by a

stringer made of the same material with an area
of 0.5 square inch. A crack 6 inches long extends

3 inches on either side of the stringer. The

effective radius of curvature p_ at the tip of the

crack is taken to be 0.002 inch. Ac('or(ling to a

well-known formula, the theoretical stress con-

eentration factor Igr at the tip of the eraek is

given by

r= 1_-2._! E= 1 -]- 2._., @= ,S.6

In the present example,

X= 2bt 2xax0.1=l.2
A 0.5

7

0

1

2

3

-I

5

6

7

8

9

1.0

1.1

1.2

1.3

1.4

1.5

1. (;

TABLE I. COMPUTED VAI, UES OF C, ?5, AND C*

0.

c

637

645

652

658

662

667

(;70

67,1

677

680

683

686

688

691

693

695

697

p

1. 000

1. 060

1.[15

I. I68

1. 219

1. 269

1. 318

1. 266

I. 413

1. -159

I. 504

1. 549

1. 593

1. t336

1. 679

I. 722

1. 764

C* X

m 1.7

4.06 1.8

2.73 1.9

2. 23 2. 0

1. 960 3. 0

I. 791 4. 0

I. 676 5. 0

1. 590 6. 0
I. 524 i 7. 0

1. ,t72 g, 0

I. 430 9. 0

I. 394 10. 0

1. 365 15. 0

1. 339 20. 0

1. 317 30. 0

1. 297 ] 5O. 0
1. 280 100, 0

c

0. 699

701

703

704

718

729

737

7-t 4

750

755

759

763

777

787

80O

816

831

1. 806

1. 848

1. 889

1. 930

2.32

2. 69

3. 05

3. 40

3. 73

-t. 06

4.38

,t. 70

6.21

7. 64

10. 35

15. -t0

27. 0

C •

1. 265

1. 251

t. 239

1. 228

1. 156

1. 119

1. 096

1. 080

1. 069

1.06t

I. 054

1. 0-19

1. 033

1. 025

1. 017

I. 010

I. 005
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FIGURE _.

I0

Variation with X of tim raiio C of th(, stress concentration fact_)rs in a cracked sheet with and without a stringer

2btE
for tile case in which the stringer is intact, k=--,

A E._
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t00

10

FIG t'RE 4.

2btE
Variation of the stringer stress conce,)tralion faelor *P with X=

.IE,_
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From !able I,
C=0.688

P= 1.593

The corrected stress concentration factor Kr' at

tilt, tip of the crack is thus

KT I = ('Kr = 0.688 5"(78.6 = 54.1

The stress concentration factor ill the sh'inger is

"P:: 1.593. The Ncuber stress concentration fac-

tor K.v for the crack, taking size effect into

account, is (set, ref. 1)

/C=_ (_+K/)

] n pratt teal applieat ions, of course, this large st ress
concentration factor is considerably re&wed when

corrected for the effect of plasticity. (See ref. 1

for details.)
DISCUSSION

Examination of figures 3 to 5 reveals at lcast

two qualitative features of the results whi(,h arc

of practical interest. One is the appreciable
stress concentration in the stringer and the other

is the detrimental iufluence of the stringer once it
has broken. These results confirm intuition.

The stringer is expected to carry part of the load
refused by the sheet because of the crack. If then

the stringer breaks, the two intact halves of the

stringer carry load into the region of the sheet

around the middle of the crack which tends to

spread the crack more than if there were no

stringer.
Because of the idealizations made in obtaining

the theoretical solution, some caution shouht be

observed in apl)lying the results. Iu the analysis

the stringer is assumed to bc continuously at-

tached to the sheet along a line. In reality the

stringer has some finite width and may bc attached

to the sheet by means of rivets. Thus the theo-
retical results eanuot be expected to be accurate

for crack lengths shorter than two or three timcs
the rivet spacing, or two or three times the width

of an integral stiffener.

LANGLE'Y RESEARCH CENTER_

_'ATIONAL AERONAUTICS AND SPACE ADMINISTRATION,

LANOLEY FIET.D, VA., December 23, 1957.
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